首页 > > 详细

代写QBUS6600 Project 1 Outline: UNICEF Australia – Predicting Response to Direct Mail Appeals代做留学生SQL语

项目预算:   开发周期:  发布时间:   要求地区:

QBUS6600 Project 1 Outline: UNICEF Australia – Predicting Response to Direct Mail Appeals

Background

UNICEF Australia is  a dedicated children's charity committed to delivering lasting impact for every child. It works in over 190 countries and territories to save children’s lives, to defend their rights, and to help them fulfil their potential, from early childhood through adolescence.

To strengthen its vital programs, UNICEF Australia is continuously improving its fundraising strategies through innovative campaigns, community engagement, and partnerships. By offering various  fundraising  initiatives—such  as  charity  events  and  digital  marketing  campaigns—it enables individuals and organizations to contribute in meaningful ways. UNICEF Australia is leveraging the use of data analytics to enhance propensity modelling, particularly by exploring how external data sources can improve the predictive performance. This data-driven approach enables more targeted and timely engagement with the appropriate audience, ultimately enhancing supporter experience and optimising long-term support. The potential benefits include greater marketing efficiency, leading to a huge impact on resources and aid delivered to children in need.

Problem Description

Use the available data (see ‘Data Description’below) to build a propensity model for direct mail (DM) appeals. The objective is to develop a model for predicting the likelihood of individuals or organisations making a donation within the next three months in response to a direct mail appeal. You can frame this task as a classification problem, where the goal is to predict whether an individual/organisation will make an action within the next three months. The project presents a unique opportunity to apply your data analytics skills to a real-world business challenge and contribute to the ongoing success of UNICEF Australia. Your work will play a  crucial role in helping UNICEF Australia improve audience selection of their direct mail appeals and make outreach more efficiently, making a positive impact on the lives of children globally.

In this project, you should:

•   Conduct Exploratory Data Analysis (EDA) to identify the top features and attributes that are likely to predict the future donation behaviour.

You should aim to find or reveal all relevant properties, characteristics, patterns, and statistics hidden in the datasets.

•   Develop a predictive model to forecast the likelihood of a donor making a donation over the next three months in response to a direct mail appeal.

You  can  implement  any  statistical  or  machine  learning  approaches  that  you  feel  are appropriate. Ensure that you justify the selection of your model and interpret the model in terms of the key attributes for predicting the future donor behaviour. Use the F1-score to evaluate the performance of your final model.

•   Based on your analysis, outline a strategy to help UNICEF Australia improve audience

selection of their direct mail appeals, increase the response rate, and improve fundraising efforts.

You should recommend a strategy for the UNICEF Australia team to execute, to take advantage of the key insights that you have identified, and the models you have built and validated. The strategy  could include any  enhancements and/or other interventions or changes  to  direct  marketing  campaigns,  backed  by  high-level  cost  estimates  and fundraising avenues accompanied by assumptions and/or supporting data.

Data Description

UNICEF Australia has provided you with their CRM data in multiple CSV files, including the information on donation transactions, campaign details, and descriptive features of the donors, such as address postdoc, donation type, and other relevant attributes.

You are required to utilize the existing CRM data and augment it with at least one third-party open- source data of your choice (e.g., Mosaic or ABS) to improve the accuracy of predictions.

UNICEF Australia has made efforts to ensure the data is relatively clean, however, we encourage you to perform. checks and conduct the necessary data processing and feature engineering. You are also welcome to explore external datasets to enrich your analysis and feature engineering.

Useful Tips

Data Processing: Select and process the necessary CRM data files required for your analysis. Use match keys to merge relevant datasets.

Train-Test Split: Implement a train-test split to validate your model's performance and prevent overfitting.

Feature Engineering: Perform. feature engineering to enhance model performance. Creating and transforming features can uncover hidden patterns.

Experiment with Models: Test various machine learning models to find the most suitable one. This experimentation is key to achieving high model performance.





软件开发、广告设计客服
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 9951568
© 2021 www.rj363.com
软件定制开发网!